Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell Mol Life Sci ; 80(6): 151, 2023 May 17.
Article in English | MEDLINE | ID: covidwho-2325328

ABSTRACT

Antimicrobial peptides (AMPs) are major components of the innate immune defense. Accumulating evidence suggests that the antibacterial activity of many AMPs is dependent on the formation of amyloid-like fibrils. To identify novel fibril forming AMPs, we generated a spleen-derived peptide library and screened it for the presence of amyloidogenic peptides. This approach led to the identification of a C-terminal 32-mer fragment of alpha-hemoglobin, termed HBA(111-142). The non-fibrillar peptide has membranolytic activity against various bacterial species, while the HBA(111-142) fibrils aggregated bacteria to promote their phagocytotic clearance. Further, HBA(111-142) fibrils selectively inhibited measles and herpes viruses (HSV-1, HSV-2, HCMV), but not SARS-CoV-2, ZIKV and IAV. HBA(111-142) is released from its precursor by ubiquitous aspartic proteases under acidic conditions characteristic at sites of infection and inflammation. Thus, HBA(111-142) is an amyloidogenic AMP that may specifically be generated from a highly abundant precursor during bacterial or viral infection and may play an important role in innate antimicrobial immune responses.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Humans , Peptides , Amyloid/chemistry , Anti-Bacterial Agents/pharmacology , Hemoglobins
2.
J Biomol Struct Dyn ; 40(18): 8464-8493, 2022 11.
Article in English | MEDLINE | ID: covidwho-1242069

ABSTRACT

The COVID-19 pandemic infection has claimed many lives and added to the social, economic, and psychological distress. The contagious disease has quickly spread to almost 218 countries and territories following the regional outbreak in China. As the number of infected populations increases exponentially, there is a pressing demand for anti-COVID drugs and vaccines. Virtual screening provides possible leads while extensively cutting down the time and resources required for ab-initio drug design. We report structure-based virtual screening of a hundred plus library of quinoline drugs with established antiviral, antimalarial, antibiotic or kinase inhibitor activity. In this study, targets having a role in viral entry, viral assembly, and viral replication have been selected. The targets include: 1) RBD of receptor-binding domain spike protein S 2) Mpro Chymotrypsin main protease 3) Ppro Papain protease 4) RNA binding domain of Nucleocapsid Protein, and 5) RNA Dependent RNA polymerase from SARS-COV-2. An in-depth analysis of the interactions and G-score compared to the controls like hydroxyquinoline and remdesivir has been presented. The salient results are (1) higher scoring of antivirals as potential drugs (2) potential of afatinib by scoring as better inhibitor, and (3) biological explanation of the potency of afatinib. Further MD simulations and MM-PBSA calculations showed that afatinib works best to interfere with the the activity of RNA dependent RNA polymerase of SARS-COV-2, thereby inhibiting replication process of single stranded RNA virus. Communicated by Ramaswamy H. Sarma.


Subject(s)
Antimalarials , COVID-19 Drug Treatment , Hydroxyquinolines , Quinolines , Afatinib , Anti-Bacterial Agents , Antiviral Agents/chemistry , Chymotrypsin , Humans , Molecular Docking Simulation , Nucleocapsid Proteins , Pandemics , Papain , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Quinolines/pharmacology , RNA-Dependent RNA Polymerase , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization
3.
ACS Omega ; 5(51): 33151-33161, 2020 Dec 29.
Article in English | MEDLINE | ID: covidwho-1007704

ABSTRACT

The recent pandemic caused by SARS-CoV-2 has led the world to a standstill, causing a medical and economic crisis worldwide. This crisis has triggered an urgent need to discover a possible treatment strategy against this novel virus using already-approved drugs. The main protease (Mpro) of this virus plays a critical role in cleaving the translated polypeptides that makes it a potential drug target against COVID-19. Taking advantage of the recently discovered three-dimensional structure of Mpro, we screened approved drugs from the Drug Bank to find a possible inhibitor against Mpro using computational methods and further validating them with biochemical studies. The docking and molecular dynamics study revealed that DB04983 (denufosol) showed the best glide docking score, -11.884 kcal/mol, and MM-PBSA binding free energy, -10.96 kcal/mol. Cobicistat, cangrelor (previous computational studies in our lab), and denufosol (current study) were tested for the in vitro inhibitory effects on Mpro. The IC50 values of these drugs were ∼6.7 µM, 0.9 mM, and 1.3 mM, respectively, while the values of dissociation constants calculated using surface plasmon resonance were ∼2.1 µM, 0.7 mM, and 1.4 mM, respectively. We found that cobicistat is the most efficient inhibitor of Mpro both in silico and in vitro. In conclusion, cobicistat, which is already an FDA-approved drug being used against HIV, may serve as a good inhibitor against the main protease of SARS-CoV-2 that, in turn, can help in combating COVID-19, and these results can also form the basis for the rational structure-based drug design against COVID-19.

4.
J Biomol Struct Dyn ; 39(17): 6713-6727, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-692773

ABSTRACT

The recent outbreak of the SARS-CoV-2 virus leading to the disease COVID 19, a global pandemic has resulted in an unprecedented loss of life and economy worldwide. Hence, there is an urgent need to discover effective drugs to control this pandemic. NSP16 is a methyltransferase that methylates the ribose 2'-O position of the viral nucleotide. Taking advantage of the recently solved structure of NSP16 with its inhibitor, S-Adenosylmethionine, we have virtually screened FDA approved drugs, drug candidates and natural compounds. The compounds with the best docking scores were subjected to molecular dynamics simulations followed by binding free energy calculations using the MM-PBSA method. The known drugs which were identified as potential inhibitors of NSP16 from SARS-CoV-2 included DB02498, DB03909, DB03186, Galuteolin, ZINC000029416466, ZINC000026985532, and ZINC000085537017. DB02498 (Carba-nicotinamide-adenine-dinucleotide) is an approved drug which has been used since the late 1960s in intravenous form to significantly lessen withdrawal symptoms from a variety of drugs and alcohol addicts and it has the best MM-PBSA binding free energy of-12.83 ± 0.52 kcal/mol. The second best inhibitor, Galuteolin is a natural compound that inhibits tyrosinase enzyme with MM-PBSA binding free energy value of -11.21 ± 0.47 kcal/mol. Detailed ligand and protein interactions were analyzed and common residues across SARS-CoV, SARS-CoV-2, and MERS-CoV were identified. We propose Carba-nicotinamide-adenine-dinucleotide and Galuteolin as the potential inhibitors of NSP16. The results in this study can be used for the treatment of COVID-19 and can also form the basis of rational drug design against NSP16 of SARS-CoV-2.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Drug Repositioning , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2
5.
J Biomol Struct Dyn ; 39(17): 6649-6659, 2021 10.
Article in English | MEDLINE | ID: covidwho-692642

ABSTRACT

The recent outbreak of the SARS-CoV-2 virus leading to the disease COVID 19 has become a global pandemic that is spreading rapidly and has caused a global health emergency. Hence, there is an urgent need of the hour to discover effective drugs to control the pandemic caused by this virus. Under such conditions, it would be imperative to repurpose already known drugs which could be a quick and effective alternative to discovering new drugs. The main protease (Mpro) of SARS-COV-2 is an attractive drug target because of its essential role in the processing of the majority of the non-structural proteins which are translated from viral RNA. Herein, we report the high-throughput virtual screening and molecular docking studies to search for the best potential inhibitors against Mpro from FDA approved drugs available in the ZINC database as well as the natural compounds from the Specs database. Our studies have identified six potential inhibitors of Mpro enzyme, out of which four are commercially available FDA approved drugs (Cobicistat, Iopromide, Cangrelor, and Fortovase) and two are from Specs database of natural compounds (Hopeaphenol and Cyclosieversiodide-A). While Cobicistat and Fortovase are known as HIV drugs, Iopromide is a contrast agent and Cangrelor is an anti-platelet drug. Furthermore, molecular dynamic (MD) simulations using GROMACS were performed to calculate the stability of the top-ranked compounds in the active site of Mpro. After extensive computational studies, we propose that Cobicistat and Hopeaphenol show potential to be excellent drugs that can form the basis of treating COVID-19 disease.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Humans , Molecular Docking Simulation , Peptide Hydrolases , Protease Inhibitors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL